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Abstract. Real-time large-scale crowd simulations with realistic behav-
ior, are important for many application areas. On CPUs, the ORCA
pedestrian steering model is often used for agent-based pedestrian simu-
lations. This paper introduces a technique for running the ORCA pedes-
trian steering model on the GPU. Performance improvements of up to
30 times greater than a multi-core CPU model are demonstrated. This
improvement is achieved through a specialized linear program solver on
the GPU and spatial partitioning of information sharing. This allows
over 100,000 people to be simulated in real time (60 frames per second).
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1 Introduction

Crowd simulations are important for many applications, such as safety studies
for communal transport hubs and flows within sports stadiums and large build-
ings [29]. Such simulations require believable dynamics that match observed
behavior, including correct collision avoidance, or steering behavior. The Op-
timal Reciprocal Collision Avoidance (ORCA) algorithm [4] is an agent-based
solution that can simulate many real crowd behaviors. Currently, implementa-
tions of the ORCA algorithm have been made for single- and multi-core CPU.
This paper presents a GPU implementation, supporting real-time simulations
and interactivity for very large populations of order 5 × 105.

Computer models that contain inherent parallelism are suitable candidates
for GPUs. This applies to agent-based pedestrian simulation models, where all
agents follow the same rules. Using steering techniques that lend themselves well
to implementation on GPU architecture can result in much faster performance
[2, 5]. By increasing performance, greater numbers of people can be simulated
and/or a more accurate, possibly more time-consuming, algorithm can be used
for the simulation.

This paper presents a GPU implementation of the ORCA model for agent-
based pedestrian simulation. We parallelize as much of the data and computation
as possible, choosing data parallel algorithms and spatial partitioning to allow
communication between people to provide speedup. Our solution makes use of
a novel low-dimension linear program solver developed for the architecture of a
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GPU [8], and a grid-based spatial partitioning scheme of information transfer
between GPU threads [22]. Grid partitioned data structures are an efficient form
of spatial partitioning on the GPU [17]. Our GPU implementation shows perfor-
mance increases of up to 30 times over the original CPU multi-core version [4,
26] with these changes. In addition, it consistently outperforms the CPU version
for sufficiently large amounts of people.

The organization of the paper is as follows. Section 2 covers background
information and related work. Section 3 explains in detail the implementation of
the ORCA model on the GPU. Section 4 presents results and discussion of the
multi-core CPU and GPU ORCA models. Finally, section 5 gives the conclusions.

2 Background

Many types of models have been proposed to generate local pedestrian motion
and collision avoidance [20, 21, 27]. The simplest separation of steering models is
between continuum models and microscopic models. Continuum models attempt
to treat the whole crowd in a similar way to a fluid, allowing for fast simulation
of larger numbers of people, but are lacking in accuracy at the individual person
scale [18]. Moving part of the calculation to the GPU has shown performance
improvements [9]. Overall, however, the model is not ideal for solving on the
GPU due to the large sparse data structures. In comparison, microscopic models
tend to be paired with a global path planner to give people goal locations and
trajectories. Such models specify rules at the individual person scale, with crowd-
scale dynamics being an emergent effect of the rules and interactions, and easily
allow for non-homogeneous agents and behavior.

Popular microscopic models are cellular automata (CA), social forces[14] and
velocity obstacles (VO) [10]. CA are popular due to the ability to reproduce ob-
servable phenomena [6, 7], but a downside is the inability to reproduce other be-
haviors due to using discrete space. CA models are computationally lightweight
and lend themselves well to specify certain complex behavior. However, CA
pedestrian models tend to use discrete spatial rules, where the order of agent
movements are sequential, which does not lend itself to parallelism and GPU
implementations [24]. Social forces models use a computationally lightweight set
of rules that allows for crowd-scale observables such as lane formation. They are
well suited to parallelizing on the GPU since all agents can be updated simul-
taneously, with good performance for many simulated people [15, 23]. However,
generated simulations can result in unrealistic looking motion and produce un-
desirable behavior at large densities.

Velocity obstacles (VO) work by examining the velocity and position of
nearby moving objects to compute a collision-free trajectory. Velocity-space is
analyzed to determine what velocities can be taken which do not cause colli-
sions. VO models lend themselves to parallelization since agents are updated
simultaneously and navigate independently of one another with minimal explicit
communication. It tends to be more computational and memory intensive than
social forces models, but the large throughput capability of the GPU for such
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parallel tasks make it a very suitable technique for GPU implementation. Early
models assumed that each person would take full responsibility for avoiding other
people. Several variations include the reactive behavior of other models [1, 16,
11]. One example is reciprocal velocity obstacles (RVO), where the assumption
is that all other people will take half the responsibility for avoiding collisions [3,
12]. This model has been implemented on the GPU [5] and has shown credible
speedup over the multi-core CPU implementation through use of hashing instead
of naive nearest neighbor search. Group behavior has also been included in VO
models [13, 30] allowing people to be joined into groups. Such people attempt to
remain close to other members of the group and aim for the same goal location.
A further extension is optimal reciprocal collision avoidance (ORCA). It provides
sufficient conditions for collision-free motion. It works by solving low-dimension
linear programs. Freely available code libraries have been implemented for both
single- and multi-core CPU [26].

VO techniques are very suitable candidates for GPU implementation. The
RVO model and implementation by Bleiweiss [5] show notable performance gains
against multi-core CPU equivalent models. However, these methods must per-
form expensive calculations to find a suitable velocity. They tend to perform
slower and are not guaranteed to find the best velocity. ORCA is deemed more
suitable because of its performance relative to other VO models and collision-free
motion, theoretically providing “better” motion (i.e. less collisions).

Linear programming is a way of maximizing an objective function subject to
a set of constraints. For ORCA, linear programming is used to find the closest
velocity to a person’s desired velocity which does not result in collisions. It is
important to choose a solver that is efficient on the GPU at low dimensions. A
popular solver type is the Simplex method. This is best suited for large dimension
problems and struggles at lower dimensions. The incremental solver [25] is effi-
cient at low dimensions but suffers on the GPU due to load balance: not all GPU
threads have the same amount of computation, which reduces the performance
on such parallel architecture. The batch GPU two-dimension linear solver [8] is
an efficient way to solve the numerous linear problems simultaneously. We make
use of this approach, demonstrating its use for large-scale pedestrian simulations.

3 The Algorithm

The proposed algorithm is based on the multi-core ORCA model and applies
GPU optimizations. This section provides an overview of the algorithm as well
as important changes and optimizations that need to be made to make the
simulation efficient for running on the GPU. For more in-depth description of
the ORCA algorithm, see the work of van den Berg et. al [4]. The main changes
are the use of an efficient linear program made for GPUs and an efficient method
of communication between GPU cores for people to “observe” properties of other
people.

As an overview to the ORCA model, each person in the model has a start
location and an end location they want to reach as quickly as possible, subject
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Fig. 1: (a) A system of 2 people a and b with corresponding radius ra and rb. (b)
The associated velocity obstacle V Oa|b in velocity space for a look-ahead period
of time τ caused by the neighbor b for a. (c) The vector of velocities vopta − vopta

lies within the velocity obstacle V Oa|b. The vector u is the shortest vector to the
edge of the obstacle from the vector of velocities. The corresponding half-plane
ORCAa|b is in the direction of u, and intersects the point vopta + u. (d) A view
of a blue agent and its neighbors, as well as the generated half-planes caused
by the neighbors interacting with the blue agent. The solid blue arrow shows
the desired velocity of the blue agent. The dotted blue arrow is the resulting
calculated velocity that does not collide with any neighbor in time τ .
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to an average speed and capped maximum speed. For each simulation iteration,
each agent “observes” properties of nearby people, namely radius, the current
position and velocity. For each nearby agent a half-plane of restricted velocities is
calculated (figure 1). By selecting a velocity not restricted by this half-plane, the
two agents are guaranteed to not collide within time τ , where τ is the lookahead
time, the amount of forward time planning people make to avoid collisions. By
considering all nearby agents, the set of half-planes creates a set of velocities
that, if taken, do not collide with any nearby agents in time τ . The agent then
selects from the permissible velocities the one closest to its desired velocity and
goal. Figure 1d shows the resulting half-planes caused by neighboring agents
on an example setup, and the optimal velocity that most closely matches the
person’s desired velocity.

It is possible that the generated set of half-planes does not contain any possi-
ble velocities. Such situations are caused by large densities of people. The solution
is to select a velocity that least penetrates the set of half-planes induced by the
other agents. In this case, there is no guarantee of collision-free motion.

The computation of velocity subject to the set of half-planes is done using
linear programming. The problem for the linear program is defined with the
constraints corresponding to the half-plane ORCAa|b of velocities, attempting
to minimize the difference of the suitable velocity from the desired velocity. Since
each agent needs to find a new velocity, there is a linear problem corresponding
to each agent, each iteration. The algorithm used to solve this is the batch-
GPU-LP algorithm [8]. It is an algorithm designed for solving multiple low-
dimensional linear programs on the GPU, based on the randomized incremental
linear program solver of Seidel [25].

This batch-LP solver works by initially assigning each thread to a problem
(i.e. one pedestrian). Each thread must solve a set of half-plane constraints,
subject to an optimization function. Respectively, these are that the person
should not choose a velocity that collides with other people, and the person
wants to travel as close to their desired velocity as possible.

Each half-plane constraint is considered incrementally. If the current velocity
is not satisfied by the currently considered constraint a new valid velocity is
calculated. The calculation of a new velocity is one of the most computationally
expensive operations. It is also very branched, as only only some of the solvers
require a new valid velocity and others can maintain their current value. This
branching calculation causes the threads that do no need to perform a calcu-
lation to remain idle while the other threads perform the operation. This is an
unbalanced workload on the GPU device and can vastly reduce the throughput
as many threads do not perform any calculations, exacerbated by the fact that
those threads performing the operation must take a lot of time to complete the
operation.

The implementation of this calculation uses ideas from cooperative thread
arrays [28] to subdivide the calculation into “work units”, blocks of equal size
computation. These work units can be transferred to and computed by different
threads, allowing for a balanced work load and good performance. If the thread



6 J. Charlton et al.

does not need to compute a new velocity, then it can aid in another problem’s
calculation. This algorithm shows performance improvements over state-of-the-
art CPU LP solvers and other GPU LP solvers [8].

Fig. 2: FLAME message partitioning. The simulation is discretized into spatial
bins and people save their message to the corresponding bin. For a given person
(blue star), it does not read messages of those in non-neighboring bins (white
pentagons). For those within the same or neighboring partitioning bins, it cal-
culates whether they are within the observation radius robs. If not, they are
ignored (grey pentagons). If they are within the observation radius (green pen-
tagon) the person is aware of them and will attempt to avoid them accordingly,
by generating corresponding ORCA half-planes of valid velocities.

The other main improvement is concerning the communication between peo-
ple. Some information must be observed by people in the model. Examples are
the radius, speed and position of others nearby. In order to communicate this
information between people we use the idea of messages from the FLAME GPU
framework [22], which is demonstrated in figure 2. Each agent creates a message
which contains information on observables about themselves. Each message is
assigned a spatial location equal to the position of the agent in the simulation.
These messages are organized into spatial bins. Each agent will then read the
messages from its associated bin, and those neighboring. This method is far faster
than a brute-force read all approach for large spaces and many people/messages.
The associated overhead in organizing messages into bins outweighs the cost of
reading all messages and discarding those far away. A possible alternate imple-
mentation, that is used by the CPU model, uses a KD-tree spatial partitioning.
It is expected, from the work of Li and Mukundan [17], that this grid based
spatial partitioning is faster than a KD-tree implementation on the GPU.

4 Results

This section presents the results of two experiments. The first experiment is
composed of two test cases to demonstrate the appearance and correctness of
the model. The first test case is a two-way crossing and the second test case
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is an eight-way crossing. The second experiment demonstrates the performance
compared to the equivalent multi-core CPU version [4, 26].

For the first experiment, all the test cases are set up in a similar way. Multiple
associated start and end regions are chosen, such that people are spawned in a
start region with a target in an associated end region. Random spawn locations
are chosen so that there is no overlap with other people within a certain time
period based on person size and speed. Within a simulation, each agent has
a goal location to aim for. The agent’s velocity is in the direction of the goal
location, scaled to the walking speed. Once a person reaches the goal location
they are removed from the simulation. Once all people have reached their goal
the simulation is ended.

The first test case was a 2-way crossing, with the two crowds attempting to
pass amongst each other to reach their destination. Two variations of this were
simulated. The first involves all people with the same size and speed parameters.
The second version varies the size and speed parameters of each individual.
Figure 3 shows the first variation for 2.5×103 people. The starting region of one
group of people is the same area as the goal region of the other, forcing the two
groups to navigate past each other. All agents have the same parameters, namely
radius= 0.5m, desired speed = 1.0m/s and maximum speed= 1.33m/s. Various
expected behaviors such as lane formation can be observed. The visualizations
of the results are done by saving the agent data for each simulation step to a
binary file and passing this to the Unreal engine.

Fig. 3: Visualization of 2,500 people in Unreal. Two crowds navigate past each
other, one heading from left to right and the other heading from right to left.
Left: scene view from above. Colored arrows show the direction of travel. One
pedestrian is highlighted with a green circle; Inset: view from the perspective of
the pedestrian in the green circle
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In the second variation of the first test case, people have different sizes and
different maximum speeds. Figure 4 illustrates this. In this example all people
have an equal chance of being of radius 0.5m, 0.75m or 1m (shown by person
size in the figure, as well as S, M and L on their tops) and, independently, an
equal chance of a desired speed of 1m/s, 1.33m/s or 2m/s. The maximum speed
is adjusted to be 125% of the desired speed. In figure 4, people moving in the
x direction (left to right) have red tops, and people moving in the negative x
direction (right to left) have blue tops. Brighter shaded tops indicate the largest
desired speed, 2m/s, and the darkest tops indicate the slowest speed, 1m/s.

Fig. 4: Visualization of 2,500 people in Unreal. Two crowds navigate past each
other, one heading from left to right (blue clothes) and the other from right
to left (red clothes). People are color coded according to their maximum speeds
(using three shades of red or blue, respectively) and have varying radii (indicated
by their actual size and also using S, M and L on their tops). Top: scene view
from above; One pedestrian is highlighted with a green circle; Inset: view from
the perspective of the pedestrian in the green circle

The second test case was an 8-way crossing, visualized in figure 5. Each crowd
must navigate 135 deg across the environment, resulting in a vortex-like pattern
around the center.

The second experiment was designed to test the performance of the GPU
implementation in comparison to the multi-core CPU implementation. Figure 6
shows the results that varying numbers of people have on the frame time. Various
test cases (e.g. 2-way and 8-way crossings) with different agent parameters were
run, and the timings averaged between them. In this experiment no visualisation
was used so as to ensure the timings were due to the algorithm only. The GPU
solution gives speed increases of up to 30 times compared to the multi-core CPU
implementation. Results for the single-core CPU version are not given as for any
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Fig. 5: Visualization of 10,000 people in Unreal. Eight crowds attempting to
navigate to the opposite end of the environment. Different colors are used for
each crowd. Top: scene view from above; One pedestrian is highlighted with a
green circle; Inset: view from the perspective of the pedestrian in the green circle

sizeable number of agents the multi-core CPU implementation always outper-
forms the single-core CPU implementation. This is due to better utilization of
the CPU device. The colored bars of figure 6 correspond to the primary (left)
vertical axis, which uses a logarithmic scale. The relative time taken between
the charts corresponds to the secondary (right) vertical axis, with linear scale.

The results show that the speed increases proportionally to the number of
people. Greater relative speed-up occurs for even larger numbers of people, but
the time taken per frame is below real time. The GPU simulations ran at close
to 30 frames a second (33ms per frame) for up to 5 × 105 agents. The CPU
version performs better for smaller number of agents, with a crossover occurring
at approximately 2 × 103 agents. This is due to the GPU device not being fully
utilized for smaller simulations and the reduced throughput being outperformed
by the CPU. The experiments were run on an NVIDIA GTX 970 GPU card
with 4GB dedicated memory and a 4-core/8-thread Intel i7-4790K with 16 GB
RAM. The GPU was connected by PCI-E 2.0. The GPU software was developed
with NVIDIA CUDA 8.0 on Windows 10. On the GPU tested, there was a limit
on the amount of usable memory of 4GB, which corresponded to approximately
5×105 people. It is expected that relative performance increases will continue to
be obtained for larger numbers of people for the GPU implementation for GPUs
with larger memory capacity.
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Fig. 6: Frame time (in ms) for multi-core CPU and GPU ORCA models with
varying numbers of people. Logarithmic scale on primary (left) vertical axis.
Relative timing is given on the secondary (right) vertical axis, in linear scale.
Simulation time only without visualisation of the pedestrians.

5 Conclusions

We have introduced a GPU-optimized version of the ORCA model. It shows
substantial performance increases for large numbers of people compared to the
multi-core CPU version. We demonstrated the performance gains through real-
time visualizations that would not be possible on similar level CPU hardware.

Our model is currently limited in the number of people in the simulation size
due to GPU memory. The models use large amounts of memory for storing the
ORCA half-planes of each person. Memory usage could be reduced by considering
fewer people. This would reduce the memory of each person but may result in
less realistic motion with greater chance of collisions. A solution to the lack of
memory is with Maxwell and later architectures, which can use managed memory
[19] to page information from CPU to GPU on demand. This would allow for
many more people to be simulated, up to the computer’s RAM capacity. It is
expected that greater relative speedups between multi-core CPU and GPU will
continue to be obtained for even larger amounts of simulated people.

It is expected that the more computationally expensive steering models would
include more realistic motion such as side-stepping, more realistic densities, and
less probability of collisions. In comparison, it is expected that the model in this
paper would have greater performance and larger numbers of simulated people.

The current work involves writing the data from the simulation to a file before
visualization using Unreal. The data is copied from the GPU to the CPU, then
loaded into Unreal and copied back to the GPU in Unreal for visualization. This
is expensive. Future work will look at how to use the Unreal engine to visualize
a simulation as it is calculated, which could be done by sharing GPU buffer
information between the simulation program and the Unreal Engine.
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